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Statistics; Probability

• Statistics is the study of uncertainty: how to measure it, and how to

make choices in the face of it.

Since uncertainty is an inescapable part of the human condition, statistics

has the potential to be helpful in almost every aspect of daily life, including

science (the acquisition of knowledge for its own sake) and decision-making

(how to use that knowledge to make a choice among the available actions).

When you notice you’re uncertain about something — for example, the truth

status of a true-false proposition such as “This patient is HIV-positive” or

“Obama will win a second term as U.S. President in 2012” — it’s natural

to want

(a) to quantify how much uncertainty you have and

(b) to figure out how to reduce your uncertainty if the answer to (a) is higher

than the level necessary to achieve your goals.

Probability is the part of mathematics devoted to quantifying uncertainty, so it

plays a fundamental role in statistics,
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Description, Inference, Prediction, ...

and so does data-gathering, because the best way to reduce your uncertainty is

to get some relevant new information (data).

Statistical activities are of four basic types:

• Description of the important features of a data set, without an attempt to

generalize outward from it (this activity is almost completely non-probabilistic,

and I won’t have much to say about it in this talk).

• Inference about the nature of the underlying process generating the data.

This is the statistical version of what the 18th-century philosopher Hume

referred to as the problem of induction; it includes as special cases (a)

answering questions about causality and (b) generalizing outward from a

sample of data values to a population (a broader universe of discourse).

• Prediction of future data on the basis of past data, including quantifying how

much uncertainty you have about your predictions.

This is important in science, because good (bad) scientific theories make

good (bad) predictions, and it’s also important in
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Decision-Making; Frequentist, Bayesian Probability

• Decision-making: predicting the future under all the possible actions open to

you, and choosing your favorite future on that basis.

The systematic study of probability can be traced back to an exchange of

letters between Pascal and Fermat in the 1650s, but the version of probability

they developed turns out to be too simplistic to help in 21st-century problems

of realistic complexity.

Instead, two other ways to give meaning to the concept of probability are in

current use today:

• the frequentist (or relative-frequency) approach, in which you restrict

attention to phenomena that are inherently repeatable under “identical”

conditions and define P (A) to be the limiting relative frequency with which A

would occur in n repetitions, as n → ∞ (this approach was developed around

1870 by Venn, Boole and others and was refined in the 1930s by von Mises);

and

• the Bayesian approach, in which the argument B of the probability operator

P (B|A) is a true-false proposition whose truth status is unknown to you
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Internal/External Information; Bayesian Computation

and P (B|A) represents the weight of evidence in favor of the truth of B, given

the information in A (this approach was first developed by Bayes and Laplace

in the 18th century and was refined by Keynes, de Finetti, Ramsay,

Jeffreys, Turing, Good, Savage, Jaynes and others in the 20th century).

The Bayesian approach includes the frequentist paradigm as a special case,

so you might think it would be the only version of probability used in statistical

work today, but

• in quantifying your uncertainty about something unknown to you, the

Bayesian paradigm requires you to bring all relevant information to bear on

the calculation; this involves combining information both internal and external

to the data set you’ve gathered, and (somewhat strangely) the

external-information part of this approach was controversial in the 20th

century, and

• Bayesian calculations require approximating high-dimensional integrals

(whereas the frequentist approach mainly relies on maximization rather than

integration), and this was a severe limitation to the Bayesian paradigm for a

long time (from the 1750s to the 1980s).

Bayesian statistical reasoning 5



Metropolis Algorithm; Bayesian + Frequentist

Around 1990 two things happened roughly simultaneously that completely

changed the Bayesian computational picture:

• Bayesian statisticians belatedly discovered that applied mathematicians

(led by Metropolis and Ulam), working at the intersection between chemistry

and physics in the 1940s, had used Markov chains to develop a clever

algorithm, for approximating integrals arising in thermodynamics that are

similar to the kinds of integrals that come up in Bayesian statistics, and

• desk-top computers finally became fast enough to implement the

Metropolis algorithm in a feasibly short amount of time.

The 20th century was definitely a frequentist century, in large part because

maximization was an excellent technology for that moment in history, from the

1920s (when the statistician and geneticist Fisher emphasized it) through the

1980s; but a consensus is now emerging around the idea that

→ In the 21st century it’s important for statisticians to be fluent in

both the frequentist and Bayesian ways of thinking.
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Bayesian-Frequentist Fusion

In the 20th century many people acted as if you had to choose one of these

paradigms and defend it against attacks from people who favored the other one,

but it turns out that both approaches have strengths and weaknesses, so

that can’t be the right way to frame the issue: it seems to me instead that my

job as a statistician in this century is to develop a fusion of the two approaches

that emphasizes the strengths and de-emphasizes the weaknesses.

My personal fusion involves

• reasoning in a Bayesian way when formulating my inferences, predictions

and decisions, because the Bayesian paradigm is the most flexible

approach so far developed for incorporating all relevant sources of uncertainty;

• reasoning in a frequentist way when paying attention to how often I get

the right answer, which is an inherently frequentist activity that’s central to

good science and decision-making.

In this talk I’ll (a) expand on the brief historical notes above and (b) give

examples of Bayesian inference, prediction and decision-making in several case

studies from medicine and health policy, illustrating the fusion just mentioned.

Bayesian statistical reasoning 7



History of Probability and Statistics

• According to the useful history of mathematics web site

www-history.mcs.st-and.ac.uk, mathematics began in Babylonia in

approximately 2,000 BCE, with the development of a systematic way to record

and manipulate numbers (both integers and fractions).

• Gambling, which you would think might prompt the creation of a

mathematics based on what we now call randomness, is even older: dice-like

objects made from animal bones have been traced back to at least 4,500 BCE.

• Thus we’ve been thinking mathematically as a species for about 4,000 years

and gambling for far longer than that, and yet no one seems to have laid down

the foundations of probability until around 350 years ago.

• Some specialized problems in games of chance had been solved by Italian

mathematicians going back to the 1400s, and Galileo Galilei (1564–1642)

worked in a fragmentary way on probability concepts in the early 17th century,

but the subject was not properly launched as a branch of mathematics until an

exchange of letters between the French mathematicians Blaise Pascal

(1623–1662) and Pierre de Fermat (1601–1665) in 1654.
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Classical Approach; Law of Large Numbers

• Pascal and Fermat invented what we now call the classical approach to

probability: I enumerate the elemental outcomes (EOs) (the fundamental

possibilities in the process under study) in a way that makes them equipossible

(i.e., so that none would be favored over any other in hypothetical repetitions of

the process) and compute the classical probability PC(A) of an outcome A as

the ratio of nA = number of EOs favorable to A to n = total number of EOs.

This works for assigning probabilities to outcomes of idealized games of

chance (dice, coins, roulette, cards) but fails in complicated problems like those

people think about routinely today (e.g., what are the EOs in a regression

setting with 100,000 observations and 1,000 predictor variables?).

• The Dutch scientist Christiaan Huygens (1629–1695) published the first

book on probability in 1657.

• Another important early probability book was written by the Swiss

mathematician Jacob Bernoulli (1654–1705) and published in 1713, after his

death; in it Bernoulli stated and proved the first (weak) law of large numbers

(
P
→ of a sequence of random variables ȳn to a non-random limit µ = E(y)).
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Conditional Probability

• The Pascal-Fermat classical approach had no notion of conditional

probability; this was remedied by Thomas Bayes (1702–1761), who gave the

first definition of

P (B|A) =
P (B and A)

P (A)
, from which

P (B and A) = P (A)P (B|A) (1)

for (true-false) propositions A and B, in a posthumous publication in 1764.

Bayes was interested in causal relationships: you see an effect in the world

(e.g., people dying of a disease) and you wonder what was its cause (e.g.,

drinking the water? eating something? breathing the air? ...).

He had the bravery/imagination to consider this probabilistically, and he

noticed that P (effect|cause) was a lot easier to think about than P (cause|effect),

so he wondered how P (B|A) depended on P (A|B) (he wanted to reverse the

order of conditioning).
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Bayes’s Theorem for Propositions

To find out he wrote down his definition in the other order:

P (A|B) =
P (A and B)

P (B)
, from which

P (A and B) = P (B)P (A|B). (2)

So now he has

P (B and A) = P (A) P (B|A) and P (A and B) = P (B)P (A|B), (3)

and he can equate the two equations, since P (B and A) = P (A and B), and

solve for what he wants to get

Bayes’s Theorem for propositions: P (B|A) =
P (B)P (A|B)

P (A)
. (4)

The main application he had in mind was more ambitious: B stood for an

unknown rate at which something happens (today we might use the symbol

0 < θ < 1) and A stood for some data relevant to θ (in today’s notation his data

set was y = (y1, . . . , yn), where each yi was a 1/0 variable with success rate θ).
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Bayes’s Theorem for Real Numbers

In words he thought of his result as having the following meaning:

P (unknown|data) =
P (unknown) P (data|unknown)

P (data)
. (5)

He conjectured (correctly) that his Theorem still applies when B is a real

number (θ) and A is a vector of real numbers (y); in contemporary notation

p(θ|y) =
p(θ) p(y|θ)

p(y)
, (6)

where (a) p(θ|y) and p(y|θ) are conditional probability densities for θ given y

and y given θ (respectively) and (b) p(θ) and p(y) are (unconditional)

probability densities for θ and y (respectively).

This requires some interpreting: I want to use (6) after the data set y has

arrived, to quantify my uncertainty about θ in light of the new information,

so I want to condition on the data, i.e., to treat the entire equation as a

function of θ for fixed y; this has two implications:
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Likelihood Function

(a) p(y) is just a constant — in fact, I can think of it as the normalizing

constant, put into the equation to make the product p(θ) p(y|θ) integrate to 1

(as all densities, e.g., p(θ|y), must); and

(b) p(y|θ) may look like the sampling distribution for y given θ, but I have to

think of it as a function of θ for fixed y.

Much later, Fisher (1922) popularized this same idea and called it the

likelihood function —

l(θ|y) = c p(y|θ), (7)

where c is an arbitrary positive constant — but Bayes (1764) saw its

importance first.

With this new notation and terminology Bayes’s Theorem becomes

p(θ|y) = c p(θ) l(θ|y). (8)

l(θ|y) represents the information about the unknown θ internal to the data set

y, but this is only one ingredient in the process of drawing together all of the

evidence about θ;
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Synthesis of Knowledge

as Bayes (1764) understood, there will typically also be information about θ

external to y, and p(θ) is where this other information comes into the

synthesis of knowledge.

On the log scale, and ignoring irrelevant constants, Bayes’s Theorem says

ln p(θ|y) = ln p(θ) + ln l(θ|y), (9)

which, in words, could be interpreted as




total information

about θ



 =





information

external to y



 +





information

internal to y



 . (10)

One way (but not the only way) you could think about the information about θ

external to y is to recall the sequential nature of learning: the temporal event of

observing the data set y divides the time line into the period before y (a

priori) and the period after y (a posteriori).

Centuries after Bayes, Raiffa and Schlafer (1961) used this to suggest a

different way to express (9):
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Prior, Likelihood, Posterior

ln p(θ|y) = ln p(θ) + ln l(θ|y)








posterior

information

about θ









=









prior

information

about θ









+









likelihood

information

about θ









.

(11)

With this in mind Raiffa and Schlafer called p(θ|y) the posterior

distribution and p(θ) the prior distribution for θ, respectively.

These are actually not very good names, because (as noted above) p(θ|y) is

meant to quantify all information about θ external to y (whether that

information arrives before or after y is irrelevant), but through widespread usage

we’re stuck with them now.

With this notation and terminology Bayes’s Theorem says

p(θ|y) = c · p(θ) · l(θ|y)

( posterior ) = c · ( prior ) · ( likelihood ) .
(12)
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Laplace; Difficult Integrals Emerge

In theory, at least, the posterior distribution p(θ|y) completely solves the

inference problem about the unknown θ, and Bayes already had figured this

out in the 1760s.

• History’s second Bayesian, and a better Bayesian than Bayes (because he was

a much better mathematician), was Pierre-Simon, Marquis de Laplace

(1749–1827).

In the late 1700s Laplace independently re-discovered Bayes’s Theorem

and extended it to settings in which the unknown θ was a vector of real numbers

of length k; in this setting no changes are needed to the notation —

p(θ|y) = c p(θ) l(θ|y) (13)

— but now p(θ|y), p(θ) and l(θ|y) are all probability densities on R
k (if we want,

we can choose c in l(θ|y) = c p(y|θ) to make l(θ|y) a density).

Now, however, to evaluate c you need to compute a k-dimensional integral:

with θ = (θ1, . . . , θk), c =

(∫

· · ·

∫

p(θ) l(θ|y) dθ1 · · · dθk

)−1

. (14)

Bayesian statistical reasoning 16



The Bayesian Computation Problem

This is perhaps not so bad if k is 1 or 2, but already in Laplace’s time he wanted

to work on problems with k ≥ 10; moreover, even if you can compute c, for k > 2

it’s hard to visualize a k-dimensional posterior distribution p(θ|y), so you’ll

want to look at the k marginal distributions

p(θj |y) =

∫

· · ·

∫

p(θ|y) dθ1 · · · dθj−1dθj+1 · · · dθk, (15)

and each of these involves a (k − 1)-dimensional integral.

This — approximating high-dimensional integrals — is the Bayesian

computation problem; remarkably, in 1774 Laplace developed a class of

solutions, which we now refer to as Laplace approximations (based on

Taylor series and the multivariate Gaussian distribution); even more

remarkably, this method was forgotten after Laplace’s death and was not

independently re-discovered until the 1950s, where it re-emerged in the

applied mathematics literature under the name

saddlepoint approximations.
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The Frequentist Story; Subjectivity and Objectivity

• All (or almost all) inferential work from 1764 to 1922 was Bayesian; for

example, Gauss (1809), Galton (1888), Pearson (1892), and even Fisher

(1915) reasoned completely in the Bayesian paradigm during this period.

• In 1866 Venn published The Logic of Chance, in which he introduced the

frequentist approach to probability; this was part of a movement among

scientists in Victorian England claiming that science should be objective

(they believed that two scientists with the same data set should reach the

same conclusions); the Bayesian imperative to combine information both

internal (likelihood distribution) and external (prior distribution) to the

data set bothered Venn, because if the two scientists had different external

information they might reach different conclusions, and this went against his

definition of objectivity (in computer science language, Venn called this a bug;

Bayesians would call it a feature).

The problem with Venn’s position, of course, is that everything humans do

is subjective (based on assumptions and judgments); both science in

general and statistical inference in particular are examples:
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The Role of Assumptions and Judgments

(a) Good (bad) scientists exercise good (bad) judgment (that’s how we

know they’re good (bad));

(b) All probability and statistical modeling in problems of realistic

complexity involves assumptions and judgments.

Suppose, for example, that you and I and everybody else in the room are given a

big data set (n = 10, 000) where the outcome variable y is {loan default or

not} and there are a lot (k = 500) of variables xj (credit history) that may be

useful in predicting loan status; we’re all given a particular set of input

values for the predictor variables and asked to work independently to predict

P (default) for that individual.

There are so many judgment calls in building a model to do this (Which link

function in the family of generalized linear models? How should the xj enter

the prediction process (linearly, quadratically, ...)? What subset of the xj

should be used? Which interactions among the xj should be in the model? ...)

that our estimates of P (default) could easily differ substantially, even though

we all may be using the standard “objective” tools for model selection.
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Fisher’s Version of the Likelihood Function

I believe the only reason Venn could have believed it was a good goal “that two

scientists with the same data set should reach the same conclusions” was

that he never did a complicated data analysis.

There’s a Bayesian account of objectivity: to a Bayesian, saying that a

probability is objective just means that many reasonable people would more

or less agree on its value.

Since subjectivity is inevitable, the goal in statistical work should evidently be

(a) to make all of the assumptions and judgments in the analysis clear and

(b) to see how sensitive the conclusions are to reasonable perturbations in

the assumptions and judgments.

• In 1922 Fisher recanted on his earlier Bayesian position — he had read

Venn in the intervening years — and tried to create a non-Bayesian theory of

inference without prior distributions, basing his theory on a frequentist

interpretation of the likelihood function.

A simple example comparing likelihood and Bayesian modeling will help

demonstrate how Fisher did and did not succeed in this attempt.
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Example 1: Hospital Mortality

Example 1 (hospital-specific prediction of mortality rates): Suppose I’m

interested in measuring the quality of care (e.g., Kahn et al., 1990) offered by

one particular hospital.

I’m thinking of the Dominican Hospital (DH) in Santa Cruz, CA; if this were

your problem you’d have a different hospital in mind.

As part of this I decide to examine the medical records of all patients treated at

the DH in one particular time window, say January 2006–December 2009, for

one particular medical condition for which there’s a strong process-outcome

link, say acute myocardial infarction (AMI; heart attack).

(Process is what health care providers do on behalf of patients; outcomes are

what happens as a result of that care.)

In the time window I’m interested in there will be about n = 400 AMI patients

at the DH.

To keep things simple I’ll ignore process for the moment and focus here on one

particular outcome: death status (mortality) as of 30 days from hospital

admission, coded 1 for dead and 0 for alive.
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Frequentist Modeling

(In addition to process this will also depend on the sickness at admission of

the AMI patients, but I’ll ignore that initially too.)

From the vantage point of December 2005, say, what may be said about the

roughly 400 1s and 0s I’ll observe in 2006–09?

Frequentist modeling. By definition the frequentist approach is based on the

idea of hypothetical or actual repetitions of the process being studied, under

conditions that are as close to independent identically distributed (IID)

sampling as possible.

When faced with a data set like the 400 1s and 0s (Y1, . . . , Yn) here, the usual

way to do this is to think of it as a random sample, or like a random

sample, from some population that’s of direct interest to me.

Then the randomness in my probability statements refers to the process of

what I might get if I were to repeat the sampling over and over — the Yi become

random variables whose probability distribution is determined by this

hypothetical repeated sampling.
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Independent Identically Distributed (IID) Sampling

In the absence of any predictor information the off-the-shelf frequentist

model for this situation is of course

Yi
IID
∼ Bernoulli(θ), i = 1, . . . , n (16)

for some 0 < θ < 1, which plays the role of the underlying mortality rate in

the population of patients to whom it’s appropriate to generalize outward

(what IS that population, by the way?): if θ were unusually high, that would be

prima facie evidence of a possible quality of care problem.

Since the Yi are independent, the joint sampling distribution of all of them,

P (Y1 = y1, . . . , Yn = yn), is the product of the separate, or marginal, sampling

distributions P (Y1 = y1) , . . . , P (Yn = yn):

P (Y1 = y1, . . . , Yn = yn) = P (Y1 = y1) · · ·P (Yn = yn)

=

n
∏

i=1

P (Yi = yi) . (17)

But since the Yi are also identically distributed, and each one is Bernoulli(θ),

i.e., P (Yi = yi) = θyi (1 − θ)1−yi , the joint sampling distribution can be written
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The Likelihood Function, Again

P (Y1 = y1, . . . , Yn = yn) =
n

∏

i=1

θ
yi (1 − θ)1−yi . (18)

Let’s use the symbol y to stand for the vector of observed data values

(y1, . . . , yn).

Before any data have arrived, this joint sampling distribution is a function of y

for fixed θ — it tells me how the data would be likely to behave in the

future if I were to take an IID sample from the Bernoulli(θ) distribution.

In 1922 Fisher re-discovered the following idea (as noted earlier, Bayes and

Laplace had it first): after the data have arrived it makes more sense to interpret

(18) as a function of θ for fixed y — Fisher called it the likelihood function for

θ in the Bernoulli(θ) model:

l(θ|y) = l(θ|y1, . . . , yn) =

n
∏

i=1

θ
yi (1 − θ)1−yi (19)

= P (Y1 = y1, . . . , Yn = yn) but interpreted

as a function of θ for fixed y.
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Gaussian Likelihood With Large n

Fisher tried to create a theory of inference about θ based only on this

function — as noted above, this is an important ingredient, but not the only

important ingredient, in inference from the Bayesian viewpoint.

The Bernoulli(θ) likelihood function can be simplified as follows:

l(θ|y) = θ
s(1 − θ)n−s

, (20)

where s =
∑n

i=1 yi is the number of 1s in the sample and (n − s) is the

number of 0s; what does this function look like, e.g., with n = 400 and s = 72

(this is similar to data you would get from the DH: a 30-day mortality rate

from AMI of 18%)?
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Quadratic Log Likelihood With Large n

Note that the likelihood function l(θ|y) = θs(1 − θ)n−s in this problem depends

on the data vector y only through s =
∑n

i=1 yi — Fisher referred to any

such data summary as a sufficient statistic (with respect to the assumed

sampling model).

It’s often at least as useful to look at the logarithm of the likelihood function as

the likelihood function itself:
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In this case, as is often true for large n, the log likelihood function looks locally

quadratic around its maximum.
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Maximum Likelihood

Fisher had the further (frequentist) idea that the maximum of the likelihood

function would be a good estimate of θ (we’ll look later at conditions under

which this makes sense from the Bayesian viewpoint).

Since the logarithm function is monotone increasing, it’s equivalent in

maximizing the likelihood to maximize the log likelihood, and for a function

as well behaved as this I can do that by setting its first partial derivative with

respect to θ to 0 and solving; here I get the familiar result

θ̂MLE =
s

n
= ȳ. (21)

Fisher called the function of the data that maximizes the likelihood (or log

likelihood) function the maximum likelihood estimate (MLE) θ̂MLE.

Note also that if you maximize l(θ|y) and I maximize c l(θ|y) for any constant

c > 0, we’ll get the same thing, i.e., the likelihood function is only defined up to

a positive multiple; Fisher’s actual definition was

l(θ|y) = c P (Y1 = y1, . . . , Yn = yn) for any (normalizing constant) c > 0.
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Frequentist Inference

Frequentist inference: (1) I think of my data set as like a random sample

from some population (challenge: often difficult with observational data to

identify what this population really is).

(2) I identify some numerical summary θ of the population of interest (e.g.,

the mean), and I find a reasonable estimate θ̂ of θ based on the sample

(challenge: how define reasonable?).

(3) I imagine repeating the random sampling, and I use the random

behavior of θ̂ across these hypothetical repetitions to make probability

statements involving (but not about!) θ (e.g., confidence intervals for θ

[e.g., “I’m 95% confident that θ is between 0.14 and 0.22”] or hypothesis tests

about θ [e.g., the P value for testing H0: θ < 0.1 against HA: θ ≥ 0.1 is near 0, so

I reject H0).

I’m not allowed to make probability statements about θ in the frequentist

paradigm, because θ is just a fixed unknown constant that’s not changing

across the hypothetical repetitions; thus PF (0.14 < θ < 0.22) is not

meaningful, whereas PB(0.14 < θ < 0.22|y)
.
= 0.95 makes perfect sense.
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Calibrating the MLE

From now on c in expressions like the likelihood function above will be a generic

(and often unspecified) positive constant.

Maximum likelihood provides a basic principle for estimation of a

(population) parameter θ from the frequentist/likelihood point of view, but how

should the accuracy of θ̂MLE be assessed?

Evidently in the frequentist approach I want to compute the variance or

standard error of θ̂MLE in repeated sampling, or estimated versions of these

quantities — I’ll focus on the estimated variance V̂
(

θ̂MLE

)

.

Fisher (1922) also proposed an approximation to V̂
(

θ̂MLE

)

that works well for

large n and makes good intuitive sense.

In the AMI mortality case study, where θ̂MLE = θ̂ = s
n

(the sample mean),

it’s easy to show that

V
(

θ̂MLE

)

=
θ(1 − θ)

n
and V̂

(

θ̂MLE

)

=
θ̂(1 − θ̂)

n
, (22)

but Fisher wanted to derive results like this in a more basic and general way.
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Fisher Information

In the language of this case study, Fisher noticed that if the sample size n

increases while holding the MLE constant, the second derivative of the log

likelihood function at θ̂MLE (a negative number) increases in size.

This led him to define the information in the sample about θ — in his honor

it’s now called the (observed) Fisher information:

Î
(

θ̂MLE

)

=

[

−
∂2

∂θ2
log l(θ|y)

]

θ=θ̂MLE

. (23)

This quantity increases as n goes up, whereas my uncertainty about θ based on

the sample, as measured by V̂
(

θ̂MLE

)

, should go down with n.

Fisher conjectured and proved that the information and the estimated variance of

the MLE in repeated sampling have the following simple inverse relationship

when n is large:

V̂
(

θ̂MLE

)

.
= Î

−1
(

θ̂MLE

)

. (24)
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Likelihood-Based Large-Sample Confidence Intervals

In this case study the Fisher information and repeated-sampling variance

come out

Î
(

θ̂MLE

)

=
n

θ̂(1 − θ̂)
and V̂

(

θ̂MLE

)

=
θ̂(1 − θ̂)

n
, (25)

which matches what I already know is correct in this case.

Fisher further proved that for large n (a) the MLE is approximately unbiased,

meaning that in repeated sampling

E
(

θ̂MLE

)

.
= θ, (26)

and (b) the sampling distribution of the MLE is approximately Gaussian with

mean θ and estimated variance given by (24):

θ̂MLE

·
∼ Gaussian

[

θ, Î
−1

(

θ̂MLE

)]

. (27)

Thus for large n an approximate 95% confidence interval for θ is given by

θ̂MLE ± 1.96

√

Î−1
(

θ̂MLE

)

.
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Repeated-Sampling Asymptotic Optimality of MLE

In the above expression for Fisher information in this problem,

Î
(

θ̂MLE

)

=
n

θ̂(1 − θ̂)
,

as n increases, θ̂(1 − θ̂) will tend to the constant θ(1 − θ) (this is well-defined

because we’ve assumed that 0 < θ < 1, since θ = 0 and 1 are probabilistically

uninteresting), which means that information about θ on the basis of (y1, . . . , yn)

in the IID Bernoulli model increases at a rate proportional to n as the

sample size grows.

This is generally true of the MLE (i.e., in regular parametric problems):

Î
(

θ̂MLE

)

= O(n) and V̂
(

θ̂MLE

)

= O
(

n
−1)

, (28)

as n → ∞, where the notation an = O(bn) (as usual) means that the ratio
∣

∣

∣

an

bn

∣

∣

∣
is

bounded as n grows.

Thus uncertainty about θ on the basis of the MLE goes down like cMLE

n
on the

variance scale with more and more data (in fact Fisher showed that cMLE

achieves the lowest possible value: the MLE is efficient).

Bayesian statistical reasoning 32



Bayesian Modeling

As a Bayesian in this situation, my job is to quantify my uncertainty about the

400 binary observables I’ll get to see starting in 2006, i.e., my initial modeling

task is predictive rather than inferential.

There is no samples-and-populations story in this approach, but probability and

random variables arise in a different way: quantifying my uncertainty (for the

purpose of betting with someone about some aspect of the 1s and 0s, say)

requires eliciting from myself a joint predictive distribution that accurately

captures my judgments about what I’ll see: PB:me(Y1 = y1, . . . , Yn = yn) .

Notice that in the frequentist approach the random variables describe the

process of observing a repeatable event (the “random sampling” appealed to

here), whereas in the Bayesian approach I use random variables to quantify my

uncertainty about observables I haven’t seen yet.

It turns out that the concept of probabilistic accuracy has two components: I

want my uncertainty assessments to be both internally and externally

consistent, which corresponds to the Bayesian and frequentist ideas of

coherence and calibration, respectively.
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Exchangeability

Exchangeability as a Bayesian concept

parallel to frequentist independence.

Eliciting a 400-dimensional distribution doesn’t sound easy; major

simplification is evidently needed.

In this case, and many others, this is provided by

exchangeability considerations.

If (as in the frequentist approach) I have no relevant information that

distinguishes one AMI patient from another, my uncertainty about the 400 1s

and 0s is symmetric, in the sense that a random permutation of the order in

which the 1s and 0s were labeled from 1 to 400 would leave my uncertainty about

them unchanged.

de Finetti (1930, 1964) called random variables with this

property exchangeable:

{Yi, i = 1, . . . , n} are exchangeable if the distri-

butions of (Y1, . . . , Yn) and (Yπ(1), . . . , Yπ(n)) are

the same for all permutations (π(1), . . . , π(n)).
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Exchangeability (continued)

NB Exchangeability and IID are not the same: IID implies

exchangeability, and exchangeable Yi do have identical marginal distributions,

but they’re not independent (if I’m expecting a priori about 15% 1s, say (that’s

the 30-day death rate for AMI with average-quality care), the knowledge that in

the first 50 outcomes at the DH 20 of them were deaths would certainly change

my prediction of the 51st).

de Finetti also defined partial or conditional exchangeability (e.g., Draper et

al., 1993): if, e.g., the gender X of the AMI patients were available, and if there

were evidence from the medical literature that 1s tended to be noticeably more

likely for men than women, then I would probably want to assume conditional

exchangeability of the Yi given X (meaning that the male and female 1s and 0s,

viewed as separate collections of random variables, are each

unconditionally exchangeable).

This is related to Fisher’s (1956) idea of recognizable subpopulations.

The judgment of exchangeability still seems to leave the joint distribution of the

Yi quite imprecisely specified.
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de Finetti’s Theorem For Binary Outcomes

After defining the concept of exchangeability, however, de Finetti went on to

prove a remarkable result: if I’m willing to regard the {Yi, i = 1, . . . , n} as part

(for instance, the beginning) of an infinite exchangeable sequence of 1s and 0s

(meaning that every finite subsequence is exchangeable), then there’s a simple

way to characterize my joint predictive distribution, if it’s to be coherent (e.g.,

de Finetti, 1975; Bernardo and Smith, 1994).

(Finite versions of the theorem have since been proven, which say that the

longer the exchangeable sequence into which I’m willing to embed

{Yi, i = 1, . . . , n}, the harder it becomes to achieve coherence with any

probability specification that’s far removed from the one below.)

de Finetti’s Representation Theorem. If I’m willing to regard (Y1, . . . , Yn)

as the first n terms in an infinitely exchangeable binary sequence (Y1, Y2, . . . );

then, with Ȳn = 1
n

∑n

i=1 Yi,

• θ = limn→∞ Ȳn must exist, and the marginal distribution (given θ) for each

of the Yi must be P (Yi = yi|θ) = Bernoulli(yi|θ) = θyi(1 − θ)1−yi ,
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de Finetti’s Theorem (continued)

where P is my joint probability distribution on (Y1, Y2, . . . );

• H(t) = limn→∞ P (Ȳn ≤ t), the limiting cumulative distribution function

(CDF) of the Ȳn values, must also exist for all t and must be a valid CDF, and

• P (Y1, . . . , Yn) can be expressed as

P (Y1 = y1, . . . , Yn = yn) =

∫ 1

0

n
∏

i=1

θ
yi(1 − θ)1−yi dH(θ). (29)

When (as will essentially always be the case in realistic applications) my joint

distribution P is sufficiently regular that H possesses a density (with respect to

Lebesgue measure), dH(θ) = p(θ) dθ, (29) can be written in a more accessible

way as

P (Y1 = y1, . . . , Yn = yn) =

∫ 1

0

θ
s(1 − θ)n−s

p(θ) dθ, (30)

where s =
∑n

i=1 yi = n ȳn.
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The Law of Total Probability

P (Y1 = y1, . . . , Yn = yn) = p(y1, . . . , yn) =

∫ 1

0

θ
s(1 − θ)n−s

p(θ) dθ,

Now the Law of Total Probability says that, for all densities p(θ),

p(y1, . . . , yn) =

∫ 1

0

p(y|θ) p(θ) dθ =

∫ 1

0

θ
s(1 − θ)n−s

p(θ) dθ, (31)

This implies that in any coherent expression of uncertainty about

exchangeable binary quantities Y1, . . . , Yn,

p(y1, . . . , yn|θ) = θ
s(1 − θ)n−s

. (32)

But (a) the left side of (32), interpreted as a function of θ for fixed

y = (y1, . . . , yn), is recognizable as the likelihood function for θ given y, (b)

the right side of (32) is recognizable as the likelihood function for θ in IID

Bernoulli sampling, and (c) (32) says that these must be the same.

Thus, to summarize de Finetti’s Theorem intuitively, the assumption of

exchangeability in my uncertainty about binary observables Y1, . . . , Yn amounts

to behaving as if
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Mixture (Hierarchical) Modeling

• there is a quantity called θ, interpretable as either the long-run relative

frequency of 1s or the marginal probability that any of the Yi is 1,

• I need to treat θ as a random quantity with density p(θ), and

• conditional on this θ the Yi are IID Bernoulli(θ).

In yet other words, for a Bayesian whose uncertainty about binary Yi is

exchangeable, the model may effectively be taken to have the simple mixture or

hierarchical representation






θ ∼ p(θ)

(Yi|θ)
IID
∼ Bernoulli(θ), i = 1, . . . , n







. (33)

This is the link between frequentist and Bayesian modeling of binary outcomes:

exchangeability implies that I should behave like a frequentist vis à vis the

likelihood function (taking the Yi to be IID Bernoulli(θ)), but a frequentist

who treats θ as a random variable with a mixing distribution p(θ).

To emphasize an important point mentioned above, to make sense of this in the

Bayesian approach I have to treat θ as a random variable, even though
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Prior Specification

logically it’s a fixed unknown constant.

This is the main conceptual difference between the Bayesian and frequentist

approaches: as a Bayesian I use the machinery of random variables to express

my uncertainty about unknown quantities.

What’s the meaning of the mixing distribution p(θ)?

p(θ) doesn’t involve y = (y1, . . . , yn), so it must represent my information about θ

external to the data set y; in other words, de Finetti’s mixing distribution p(θ)

is Bayes’s prior distribution.

Example 1 (continued): Prior specification in the AMI mortality case

study — let’s say

(a) I know (from the literature) that the 30-day AMI mortality rate given

average care and average sickness at admission in the U.S. is about 15%,

(b) I know little about care or patient sickness at the DH, but

(c) I’d be somewhat surprised if the “underlying rate” at the DH was much less

than 5% or more than 30% (note the asymmetry).
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The Beta Family of Densities on (0, 1)

To quantify these judgments I seek a flexible family of densities on (0, 1), one

of whose members has mean 0.15 and (say) 95% central interval (0.05,0.30).

A convenient family for this purpose is the beta distributions,

Beta(θ|α, β) =
Γ(α + β)

Γ(α) Γ(β)
θ

α−1(1 − θ)β−1
, (34)

defined for (α > 0, β > 0) and for 0 < θ < 1; this family is convenient for two

reasons: (1) It exhibits a wide variety of distributional shapes:
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The Beta Family of Densities on (0, 1)

As we saw above, the likelihood in this problem comes from the Bernoulli

sampling distribution for the Yi,

p(y1, . . . , yn|θ) = l(θ|y) = θ
s(1 − θ)n−s

, (35)

where s is the sum of the yi.

Now Bayes’s Theorem says that to get the posterior distribution p(θ|y) I

multiply the prior p(θ) and the likelihood — in this case θs(1 − θ)n−s — and

renormalize so that the product integrates to 1.

Bayes himself noticed back in the 1750s that if the prior is taken to be of the

form c θu (1 − θ)v, the product of the prior and the likelihood will also be of

this form, which makes the computations more straightforward.

The beta family is said to be conjugate to the Bernoulli/binomial likelihood.

Conjugacy of a family of prior distributions to a given likelihood is a bit hard

to define precisely, but the basic idea — given a particular likelihood function —

is to try to find a family of prior distributions so that the product of members of

this family with the likelihood function will also be in the family.
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The Beta Family (continued)

Conjugate analysis — finding conjugate priors for standard likelihoods and

restricting attention to them on tractability grounds — is one of only two fairly

general methods for getting closed-form answers in the Bayesian approach (the

other is asymptotic analysis; see, e.g., Bernardo and Smith, 1994).

Suppose I restrict attention (for now) to members of the beta family in trying to

specify a prior distribution for θ in the AMI mortality example.

I want a member of this family which has mean 0.15 and 95% central

interval (0.05, 0.30).

If θ ∼ Beta(α, β), it turns out that

E(θ) =
α

α + β
and V (θ) =

αβ

(α + β)2(α + β + 1)
. (36)

Setting α
α+β

= 0.15 and solving for β yields β = 17
3

α; then the equation

0.95 =

∫ 0.30

0.05

Beta

(

θ

∣

∣

∣

∣

α,
17

3
α

)

dθ (37)

can readily be solved numerically for α (e.g., in a symbolic computing
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The Beta Family (continued)

package such as Maple or a statistical computing package such as R)

to yield (α, β) = (4.5, 25.5).
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This prior distribution looks just like I want it to: it has a long

right-hand tail and is quite spread out: the prior SD with this choice

of (α, β) is
√

(4.5)(25.5)
(4.5+25.5)2(4.5+25.5+1)

.
= 0.064, i.e., my prior says that I think

the underlying AMI mortality rate at the DH is around 15%, give or take

about 6 or 7%.

Bayesian statistical reasoning 44



Hierarchical Model Expansion

In the usual jargon α and β are called hyperparameters since they’re

parameters of the prior distribution.

Written hierarchically the model I’ve arrived at is

(α, β) = (4.5, 25.5) (hyperparameters)

(θ|α, β) ∼ Beta(α, β) (prior) (38)

(Y1, . . . , Yn|θ)
IID
∼ Bernoulli(θ) (likelihood)

(38) suggests what to do if I’m not sure about the specifications that led to

(α, β) = (4.5, 25.5): hierarchically expand the model by placing a distribution

on (α, β) centered at (4.5, 25.5).

This is an important Bayesian modeling tool: if the model is inadequate in some

way, expand it hierarchically in directions suggested by the nature of

its inadequacy.

Q: Doesn’t this set up the possibility of an infinite regress, i.e., how do I know

when to stop adding layers to the hierarchy?
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Conjugate Updating

A: (1) In practice people stop when they run out of (time, money), after having

made sure that the final model passes diagnostic checks; and comfort may be

taken from the empirical fact that (2) there tends to be a kind of diminishing

returns principle: the farther a given layer in the hierarchy is from the likelihood

(data) layer, the less it tends to affect the answer.

The conjugacy of the prior leads to a simple closed form for the posterior here:

with y as the vector of observed Yi, i = 1, . . . , n and s as the sum of the yi (a

sufficient statistic for θ, as noted above, with the Bernoulli likelihood),

p(θ|y, α, β) = c l(θ|y) p(θ|α, β)

= c θ
s (1 − θ)n−s

θ
α−1(1 − θ)β−1 (39)

= c θ
(s+α)−1(1 − θ)(n−s+β)−1

,

i.e., the posterior for θ is Beta(α + s, β + n − s).

This gives the hyperparameters a useful interpretation in terms of effective

information content of the prior: it’s as if the data (Beta(s + 1, n − s + 1))

were worth (s + 1) + (n − s + 1)
.
= n observations and the prior (Beta(α, β)) were

worth (α + β) observations.
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The Prior Data Set

This can be used to judge whether the prior is more informative than

intended — here it’s equivalent to (4.5 + 25.5) = 30 binary observables with a

mean of 0.15.

In Bayesian inference the prior information can always be thought of as

equivalent to a prior data set, in the sense that if

(a) I were to merge the prior data set with the sample data set and do a

likelihood analysis on the merged data, and

(b) you were to do a Bayesian analysis with the same prior information

and likelihood,

we would get the same answers.

Conjugate analysis has the advantage that the prior sample size can be explicitly

worked out: here, for example, the prior data set in effect consists of α = 4.5 1s

and β = 25.5 0s, with prior sample size n0 = (α + β)
.
= 30.

Even with non-conjugate Bayesian analyses, thinking of the prior

information as equivalent to a data set is a valuable heuristic.
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Prior-To-Posterior Updating

(39) can be summarized by saying















θ ∼ Beta(α, β)

(Yi|θ)
IID
∼ Bernoulli(θ),

i = 1, . . . , n















→ (θ|y) ∼ Beta(α + s, β + n − s), (40)

where y = (y1, . . . , yn) and s =
∑n

i=1 yi.

Suppose the n = 400 DH patients include s = 72 deaths ( s
n

= 0.18).

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20

theta

D
en

si
ty

prior

posterior

likelihood

Bayesian statistical reasoning 48



Prior-To-Posterior Updating (continued)

Then the prior is Beta(4.5, 25.5), the likelihood is Beta(73, 329), the

posterior for θ is Beta(76.5, 353.5), and the three densities plotted on the

same graph are given above.

In this case the posterior and the likelihood nearly coincide, because the data

information outweighs the prior information by 400
30

= more than 13 to 1.

The mean of a Beta(α, β) distribution is α
α+β

; with this in mind the posterior

mean has an intuitive expression as a weighted average of the prior mean and

data mean, with weights determined by the effective sample size of the prior,

(α + β), and the data sample size n:

α + s

α + β + n
=

(

α + β

α + β + n

) (

α

α + β

)

+

(

n

α + β + n

)

( s

n

)

posterior

mean
=





prior

weight









prior

mean



 +





data

weight









data

mean





.178 = (.070) (.15) + (.93) (.18)
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Comparison With Frequentist Modeling

Another way to put this is that the data mean, ȳ = s
n

= 72
400

= .18, has been

shrunk toward the prior mean .15 by (in this case) a modest amount: the

posterior mean is about .178, and the shrinkage factor is 30
30+400

= about .07.

Comparison with frequentist modeling. To analyze these data as a

frequentist I would appeal to the Central Limit Theorem: n = 400 is big

enough so that the repeated-sampling distribution of Ȳ is approximately

N
[

θ,
θ(1−θ)

n

]

, so an approximate 95% confidence interval for θ would be

centered at θ̂ = ȳ = 0.18, with an estimated standard error of

√

θ̂(1−θ̂)
n

= 0.0192,

and would run roughly from 0.142 to 0.218.

By contrast the posterior for θ is also approximately Gaussian (see the graph

on the next page), with a mean of 0.178 and an SD of
√

α∗β∗

(α∗+β∗)2(α∗+β∗+1)
= 0.0184, where α∗ and β∗ are the parameters of the beta

posterior distribution; a 95% central posterior interval for θ would then run

from about 0.178 − (1.96)(0.0184) = 0.142 to 0.178 + (1.96)(0.0184) = 0.215.

The two approaches (frequentist based only on the sample, Bayesian based on the

sample and the prior I’m using) give almost the same answers in this
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Comparison With Frequentist Modeling (continued)
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case, a result that’s typical of situations with fairly large n and relatively diffuse

prior information.

Note, however, that the interpretation of the two analyses differs:

• In the frequentist approach θ is fixed but unknown and Ȳ is random,

with the analysis based on imagining what would happen if the hypothetical

random sampling were repeated, and appealing to the fact that across these

repetitions (Ȳ − θ)
·
∼ Gaussian(0, .0192); whereas
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Comparison With Frequentist Modeling (continued)

• In the Bayesian approach ȳ is fixed at its observed value and θ is

treated as random, as a means of quantifying my posterior uncertainty

about it: (θ − ȳ|ȳ)
·
∼ Gaussian(0, .0182).

This means among other things that, while it’s not legitimate with the

frequentist approach to say that PF (.14 ≤ θ ≤ .22)
.
= .95, which is what many

users of confidence intervals would like them to mean, the corresponding

statement PB(.14 ≤ θ ≤ .22|y,diffuse prior information)
.
= .95 is a natural

consequence of the Bayesian approach.

In the case of diffuse prior information and large n this justifies the fairly

common informal practice of computing inferential summaries in a

frequentist way and then interpreting them in a Bayesian way.

Q: When does maximum likelihood work well from a Bayesian viewpoint?

A: (i) When the prior information is diffuse, the likelihood function

(interpreted as a density) and the posterior distribution will be similar; (ii)

when the sample size n is large, both the likelihood function (interpreted as

a density) and the posterior distribution will be close to (the same) Gaussian;

Bayesian statistical reasoning 52



Testing; Bayesian Decision Theory

therefore when (i) and (ii) are true, maximizing over the likelihood function

(frequentist) and integrating over it (Bayesian) will produce similar answers,

and differentiation is easier than integration; so with a large sample size

and diffuse prior information Fisher’s technology provides a convenient

approximation to the Bayesian inferential answer.

Some more history. • Fisher (1923) invents the analysis of variance for

comparing the means of more than two samples, emphasizing P values from

significance testing (in which you have a (sharp) null hypothesis (such as

θ = 0) and no explicit alternative hypothesis).

• Ramsey (1926) invents Bayesian decision theory and shows that good

(rational, coherent) decisions are found by maximizing expected utility.

• Neyman and Pearson (1928) — also working in the frequentist paradigm

— invent hypothesis testing, in which explicit null and alternative

hypotheses are specified (such as H0: θ < 0.1 versus HA: θ ≥ 0.1) and P values

play no part (instead you’re supposed to define a rejection region in the

sample space before the data are gathered and either reject the null or fail

to reject it, depending on how the data come out).
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Exchangeability; Confidence Intervals; Metropolis Algorithm

• de Finetti (1930, 1938) defines exchangeability and demonstrates its

central role in Bayesian modeling.

• Neyman (1937) invents confidence intervals.

• Metropolis and Ulam (1949) define the Monte Carlo method and point

out that anything you want to know about a probability distribution,

no matter how complicated or high-dimensional, can be learned to

arbitrary accuracy by sampling from it.

• Wald (1950) tries to create a frequentist decision theory to compete with

Ramsey’s Bayesian approach and finds, to his dismay, that all good decision

rules are Bayes rules.

• Metropolis et al. (1953) publish the Metropolis algorithm, which solves

the Bayesian computational problem (of approximating

high-dimensional integrals); no one notices this fact.

• Savage (1954) publishes The Foundations of Statistics, in which he begins

by trying to put frequentist inference on a sound theoretical footing and

ends by concluding that this is not possible; the experience of writing the book
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Gibbs Sampling; Bayesian Applied Statistics

turns Savage into a Bayesian.

• Lindley (1965) publishes Introduction to Probability and Statistics From

a Bayesian Viewpoint , in which he shows that (a) some popular frequentist

inferential tools (e.g., confidence intervals) sometimes have approximate

Bayesian interpretations but (b) others (e.g., P values) do not.

• Hastings (1970) generalizes the Metropolis algorithm and publishes the

result in Biometrika ; Bayesians still take no notice.

• Geman and Geman (1984) independently re-invent a special case of the

Metropolis-Hastings algorithm, name it Gibbs sampling, and apply it to

Bayesian image restoration; Bayesians not working in image restoration still

are unaware.

• Gelfand and Smith (1990) finally publicize Gibbs sampling in a

mainstream statistics journal as a possible solution to the Bayesian

computational problem, and desktop computers finally become fast

enough to permit the algorithm to produce useful answers in small and

medium-sized problems in under 12 hours of clock time; Bayesian applied

statistics is now finally fully operational.
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Summary of the Bayesian Statistical Paradigm

Three basic ingredients of the Bayesian statistical paradigm:

• θ, something of interest which is unknown (or only partially known) to me

(e.g., θRR, the relative risk of getting a disease under one treatment condition

versus another).

Often θ is a parameter vector (of finite length k, say) or a matrix, but it can

literally be almost anything, e.g., a function (e.g., a cumulative

distribution function (CDF) or density, a regression surface, ...), a

phylogenetic tree, an image of the (true) surface of Mars, ... .

• y, an information source which is relevant to decreasing my uncertainty

about θ.

Often y is a vector of real numbers (of length n, say), but it can also literally

be almost anything, e.g., a time series, a movie, the text in a book, ... .

• A desire to learn about θ from y in a way that is both coherent (internally

consistent, i.e., free of internal logical contradictions) and well-calibrated

(externally consistent, e.g., capable of making accurate predictions of

future data y∗).
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All Uncertainty Quantified With Probability Distributions

It turns out (e.g., de Finetti 1990, Jaynes 2003) that I’m compelled in this

situation to reason within the standard rules of probability as the basis of

my inferences about θ, predictions of future data y∗, and decisions in the

face of uncertainty, and to quantify my uncertainty about any unknown

quantities through conditional probability distributions, as follows:

p(θ|y, B) = c p(θ|B) l(θ|y, B)

p(y∗|y, B) =
∫

p(y∗|θ, B) p(θ|y, B) dθ

a∗ = argmax
a∈A

E(θ|y,B) [U(a, θ)]

(41)

• B stands for my background (often not fully stated) assumptions and

judgments about how the world works, as these assumptions relate to learning

about θ from y.

B is often omitted from the basic equations (sometimes with unfortunate

consequences), yielding the simpler-looking forms

p(θ|y) = c p(θ) l(θ|y) p(y∗|y) =
∫

p(y∗|θ) p(θ|y) dθ

a∗ = argmax
a∈A

E(θ|y) [U(a, θ)]
(42)
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Prior and Posterior Distributions

p(θ|y, B) = c p(θ|B) l(θ|y, B) p(y∗|y, B) =
∫

p(y∗|θ, B) p(θ|y, B) dθ

a∗ = argmax
a∈A

E(θ|y,B) [U(a, θ)]

• p(θ|B) is my (so-called) prior information about θ given B, in the form of a

probability density function (PDF) or probability mass function (PMF) if

θ lives continuously or discretely on R
k (let’s just agree to call this my prior

distribution), and p(θ|y, B) is my (so-called) posterior distribution about θ

given y and B, which summarizes my current total information about θ and

solves the inference problem.

These are actually not very good names for p(θ|B) and p(θ|y, B), because

(e.g.) p(θ|B) really stands for all (relevant) information about θ (given B)

external to y, whether that information was obtained before (or after) y

arrives, but (a) they do emphasize the sequential nature of learning and (b)

through long usage we’re stuck with them.

• c (here and throughout) is a generic positive normalizing constant,

inserted into the first equation above to make the left-hand side integrate (or

sum) to 1 (as any coherent distribution must).
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Sampling Distributions, Likelihood Functions and Utility

p(θ|y, B) = c p(θ|B) l(θ|y, B) p(y∗|y, B) =
∫

p(y∗|θ, B) p(θ|y, B) dθ

a∗ = argmax
a∈A

E(θ|y,B) [U(a, θ)]

• p(y∗|θ, B) is my sampling distribution for future data values y∗ given θ

and B (and presumably I would use the same sampling distribution p(y|θ, B)

for (past) data values y, thinking before the data arrives about what values

of y I might see).

This assumes that I’m willing to regard my data as like random draws from

a population of possible data values (an heroic assumption in some cases,

e.g., with observational rather than randomized data).

• l(θ|y, B) is my likelihood function for θ given y and B, which is defined to be

any positive constant multiple of the sampling distribution p(y|θ, B) but

re-interpreted as a function of θ for fixed y:

l(θ|y, B) = c p(y|θ, B). (43)

• A is my set of possible actions, U(a, θ) is the numerical value (utility) I

attach to taking action a if the unknown is really θ, and the third equation

says I should find the action a∗ that maximizes expected utility (MEU).
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Predictive Distributions and MCMC

p(θ|y, B) = c p(θ|B) l(θ|y, B) p(y∗|y, B) =
∫

p(y∗|θ, B) p(θ|y, B) dθ

a∗ = argmax
a∈A

E(θ|y,B) [U(a, θ)]

• And p(y∗|y, B), my (posterior) predictive distribution for future data y∗

given (past) data y and B, must be a weighted average of my sampling

distribution p(y∗|θ, B) weighted by my current best information p(θ|y, B)

about θ given y and B.

That’s the paradigm, and it’s been highly successful in the past (say) 30 years

— in fields as far-ranging as bioinformatics, econometrics, environmetrics,

and medicine — at quantifying uncertainty in a coherent and

well-calibrated way and helping people find satisfying answers to hard

scientific questions.

Evaluating (potentially high-dimensional) integrals (like the one in the second

equation above, and many others that arise in the Bayesian approach) is a

technical challenge, often addressed these days with sampling-based

Markov chain Monte Carlo (MCMC) methods (e.g., Gilks, Richardson

and Spiegelhalter 1996).
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An Example of Poorly-Calibrated Frequentist Inference

Quality of hospital care is often studied with cluster samples: I take a

random sample of J hospitals (indexed by j) and a random sample of N

total patients (indexed by i) nested in the chosen hospitals, and I measure

quality of care for the chosen patients and various hospital- and

patient-level predictors.

With yij as the quality of care score for patient i in hospital j, a first step

would often be to fit a variance-components model with random effects at

both the hospital and patient levels:

yij = β0 + uj + eij , i = 1, . . . , nj , j = 1, . . . , J ;
∑J

j=1 nj = N, (uj |σ
2
u)

IID
∼ N(0, σ2

u), (eij |σ
2
e)

IID
∼ N(0, σ2

e).
(44)

Browne and Draper (2006) used a simulation study to show that, with a

variety of maximum-likelihood-based methods for creating confidence

intervals for σ2
u, the actual coverage of nominal 95% intervals ranged from

72% to 94% across realistic sample sizes and true parameter values,

versus 89–94% for Bayesian methods.
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Poorly-Calibrated Frequentist Inference (continued)

In a re-analysis of a Guatemalan National Survey of Maternal and Child

Health, with three-level data (births within mothers within communities),

working with the random-effects logistic regression model

(yijk | pijk)
indep
∼ Bernoulli(pijk) with

logit(pijk) = β0 + β1x1ijk + β2x2jk + β3x3k + ujk + vk,
(45)

where yijk is a binary indicator of modern prenatal care or not and where

ujk ∼ N(0, σ2
u) and vk ∼ N(0, σ2

v) were random effects at the mother and

community levels (respectively), Browne and Draper (2006) showed that things

can be even worse for likelihood-based methods, with actual coverages

(at nominal 95%) as low as 0–2% for intervals for σ2
u and σ2

v, whereas Bayesian

methods again produce actual coverages from 89–96%.

The technical problem is that the marginal likelihood functions for

random-effects variances are often heavily skewed, with maxima at or

near 0 even when the true variance is positive; Bayesian methods, which

integrate over the likelihood function rather than maximizing it, can have

(much) better small-sample calibration performance.
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HIV–1 Vaccine Efficacy

Two concluding points for this talk: (1) Inference and decision-making are

not the same thing. (2) People sometimes use inferential tools to make an

implied decision when decision-making methods lead to a

better choice.

Example 2: A randomized controlled trial of an rgp120 vaccine against

HIV (rgp120 HIV Vaccine Study Group (2005). Placebo-controlled phase 3 trial of a

recombinant glycoprotein 120 vaccine to prevent HIV–1 infection. Journal of Infectious

Diseases, 191, 654–663).

5403 healthy HIV-negative volunteers at high risk of getting HIV were

randomized, 3598 to the vaccine and 1805 to placebo (in both cases, 7

injections over 30 months), and followed for 36 months; the main outcome

was presence or absence of HIV infection at the end of the trial, with Vaccine

Efficacy (VE) defined as

V E = 100(1 − relative risk of infection) = 100

[

1 −
P (infection|vaccine)

P (infection|placebo)

]

.

Secondary frequentist analyses examined differences in VE by gender,

ethnicity, age, and education and behavioral risk score at baseline.
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Frequentist Hypothesis Tests

A reminder of how frequentist hypothesis tests work: e.g., to test

H0: θRR < 1 against HA: θRR ≥ 1 based on a sample of size n, the optimal test

is of the form

reject H0 if θ̂RR ≥ c , where c is chosen to make

PF (type I error) = PF (reject H0 when H0 is true) ≤ α,

in which α is typically some conventional value like 0.05; or equivalently you

can reject H0 if

P value = PF (getting data as extreme as, or more extreme than,

what you got, if H0 is true) ≤ α .

If you have control over the sample size (e.g., at the time the experiment is

designed), n is typically chosen so that

PF (type II error) = PF (fail to reject H0 when H0 is false) ≤ β

(subject to the constraint PF (type I error) ≤ α), in which β is typically some

conventional value like 0.2 (1 − β = power = 0.8); if you don’t have control

over n, typically only type I error is paid attention to.

Bayesian statistical reasoning 64



Vaccine Efficacy

Rate (%) of

HIV–1 Infection VE P Value

Group Vaccine Placebo (95% CI) Unadj Adj D-M

All

Volunteers

241/3598

(6.7)

127/1805

(7.0)

6 (–17

to 24)
.59 > .5

Black

(Non-Hisp)

6/233

(2.6)

9/116

(7.8)

67 (6

to 88)
.028 .24

Black

Women

1/112

(0.9)

4/57

(7.0)

87 (19

to 98)
.033

Nonwhite
30/604

(5.0)

29/310

(9.4)

47 (12

to 68)
.012 .13

Nonwhite

Men

27/461

(6.1)

25/236

(10.6)

43 (3

to 67)
.036

The trial found a small decline in infection overall (6.7% vaccine, 7.0% placebo)

that was neither practically nor statistically significant; large preventive

effects of the vaccine were found for some subgroups (e.g., nonwhites), but

statistical significance vanished after adjustment for multiple comparisons.
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Frequentist Multiple Comparisons Adjustment

Rate (%) of

HIV–1 Infection VE P Value

Group Vaccine Placebo (95% CI) Unadj Adj D-M

Nonwhite
30/604

(5.0)

29/310

(9.4)

47 (12

to 68)
.012 .13

Note that the P value for the nonwhite subgroup was 0.012 before, but

0.13 after, (frequentist) multiple comparisons adjustment.

However, frequentist multiple comparisons methods are an inferential

approach to what should really be a decision problem (Should this vaccine

be given to nonwhite people at high risk of getting HIV? Should another

trial focusing on nonwhites be run?), and when multiple comparison

methods are viewed as “solutions” to a Bayesian decision problem they do

not have a sensible implied utility structure: they’re terrified of

announcing that an effect is real when it’s not (a type I error), and have

no built-in penalty for failing to announce an effect is real when it is (a

type II error).
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Decision-Making

In the frequentist approach, type II errors are supposed to be taken care of

by having done a power calculation at the time the experiment was

designed, but this begs the question of what decision should be taken,

now that this study has been run, about whether to run a new trial

and/or give the vaccine to nonwhite people now.

When the problem is reformulated as a decision that properly weighs all of

the real-world costs and benefits, the result (interpreted in frequentist

language) would be a third P value column in the table on page 4 (a column

called “Implied P from a decision-making perspective”, or D-M for short)

that would look a lot more like the first (unadjusted) P value column

than the second (multiple-comparisons adjusted) column, leading to the

decision that a new trial for nonwhites for this vaccine is a good clinical

and health policy choice.

The point is that when the problem is really to make a decision,

decision-theoretic methods typically lead to better choices than

inferential methods that were not intended to be used in this way.
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Decision-Theoretic Re-Analysis

Rate (%) of

HIV–1 Infection VE P Value

Group Vaccine Placebo (95% CI) Unadj Adj D-M

All

Volunteers

241/3598

(6.7)

127/1805

(7.0)

6 (–17

to 24)
.59 > .5

A

Lot

Black

(Non-Hisp)

6/233

(2.6)

9/116

(7.8)

67 (6

to 88)
.028 .24

More

Like

Black

Women

1/112

(0.9)

4/57

(7.0)

87 (19

to 98)
.033 The

Nonwhite
30/604

(5.0)

29/310

(9.4)

47 (12

to 68)
.012 .13 Unadj

Nonwhite

Men

27/461

(6.1)

25/236

(10.6)

43 (3

to 67)
.036 Col

When both type I and type II losses are properly traded off against each other (and

gains are correctly factored in as well), the right choice is (at a minimum) to run a

new trial in which Nonwhites (principally Blacks and Asians, both men and

women) are the primary study group.
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Details

This can be seen in an even simpler setting: consider a randomized

controlled Phase 3 clinical trial with no subgroup analysis, and define ∆

to be the population mean health improvement from the treatment T as

compared with the control condition C.

There will typically be some point c along the number line (a kind of

practical significance threshold), which may not be 0, such that if ∆ ≥ c

the treatment should be implemented (note that this is really a decision

problem, with action space a1 = {implement T} and a2 = {don’t}).

The frequentist hypothesis-testing inferential approach to this problem

would test H0: ∆ < c against HA: ∆ ≥ c, with (reject H0) corresponding to

action a1.

In the frequentist inferential approach H0 would be rejected if ∆̂ ≥ ∆∗,

where ∆̂ is a good estimator of ∆ based on clinical trial data D with sample

size n and ∆∗ is chosen so that the corresponding P value is no greater than α,

the type I error probability (the chance of rejecting H0 when H0 is true).

Bayesian statistical reasoning 69



Details (continued)

As noted above, α is usually chosen to be a conventional value such as 0.05, in

conjunction with choosing n large enough (if you can do this at design time) so

that the type II error probability β is no more than another conventional

value such as 0.2 (the real-world consequences of type I and type II

errors are rarely contemplated in choosing α and β, and in practice you

won’t necessarily have a large enough n for, e.g., subgroup analyses to

correctly control the type II error probability).

The Bayesian decision-theoretic approach to this decision problem requires

me to specify a utility function that addresses these real-world

consequences (and others as well); a realistic utility structure here would

depend continuously on ∆, but I can look at an oversimplified utility

structure that permits comparison with hypothesis-testing: for uij ≥ 0,

Truth

Action ∆ ≥ c ∆ < c

a1 u11 −u12

a2 −u21 u22
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Details (continued)

Truth

Action ∆ ≥ c ∆ < c

a1 u11 −u12

a2 −u21 u22

The utilities may be considered from the point of view of several different

actors in the drama; in the context of the HIV vaccine study, for instance,

considering the situation from the viewpoint of a non-HIV+ person at high

risk of becoming HIV+,

• u11 is the gain from using a vaccine that is thought to be effective and

really is effective;

• −u12 is the loss from using a vaccine that is thought to be effective and

really is not effective;

• −u21 is the loss from not using a vaccine that is thought to be not

effective but really is effective; and

• u22 is the gain from not using a vaccine that is thought to be not effective

and really is not effective (i.e., u22 = 0).
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Details (continued)

Note that the frequentist inferential approach at analysis time only

requires you to think about something (α) corresponding to one of these four

ingredients (−u12), and even then α is on the wrong (probability) scale (the

uij will be on a real-world-relevant scale such as quality-adjusted life

years (QALYs)).

The optimal Bayesian decision turns out to be

choose a1 (implement T ) ↔ P (∆ ≥ c|D) ≥
u12 + u22

u11 + u12 + u21 + u22
= u

∗
.

The frequentist inferential approach is equivalent to this only if

α = 1 − u
∗ =

u11 + u21

u11 + u12 + u21 + u22
.

In the context of the HIV vaccine, with realistic values of the uij that

appropriately weigh both the loss from taking the vaccine when it

doesn’t work and failing to take the vaccine when it does work, the

analogous frequentist inferential “action” would be to reject H0 for P

values that are much larger than the usual threshold

(e.g., 0.3 instead of 0.05).
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