
Big Data Meets Statistics
Dr. Yijiang John Li

March, 2016



At the beginning ...
● About me

○ Michigan

○ Google

○ Caspida (now Splunk)

○ yijiang1121@gmail (or LinkedIn)

● Acknowledgement

○ Kathy and Oliver

○ Mentors, colleagues and friends



Road map
● Introduction

● Batch mode

● Streaming

● Lambda Architecture



Introduction
● Nowadays almost anything data related is tied to the term Data Science

○ Two types of data scientist: type A and type B (due to Michael Hochster)

○ Type A

■ A for Analysis; making sense of data

■ Strong statistical background; practical details of working with data that aren’t taught in the 

statistics curriculum; communicating well about data

○ Type B

■ B for Building; building models which interact with users

■ Strong programming background; interested in using data “in production”

● Goal: to share my thoughts and lessons learned (focusing on B).



Introduction -- what are models for
● The interpretation / discovery side

○ Often this involves the estimation of certain parameters of interest

● The prediction side

○ Batch mode

■ Can be used online as well
■ Infrequent model updates

○ Streaming mode

■ Frequent model updating (model aging)
■ Forgetfulness



Road map
● Introduction

● Batch mode

● Streaming

● Lambda Architecture



Batch mode -- data at rest
● Start with a straightforward problem

○ Many domains (hosts)

○ Many features: global popularity and local popularity; reputation score; # paths; randomness ...

○ Interested in comparing domains w.r.t certain features

● Using percentile is very meaningful for comparison purpose

○ Also very useful if we want to flag a set of domains for further investigation

● Handling ties

○ Use average ranks



Batch -- easy part
● Not a problem if data is relatively small and lives in a “siloed” environment

○ Easily fit in the memory of a single machine

○ Think about R data frame

○ R: rank(x, ties.method = “average”)

● This is quite common for one-off analysis

○ Such aggregated data are pulled from some data repo

○ Create an analysis report for business intelligence and etc



Batch -- hard part
● What if data is reasonably big

○ could be millions of domains (even more if including paths) and hundreds of features 

○ Interested in more granular levels of information, such as daily, weekly, monthly

○ Cannot be handled by a single machine

● What if data is no longer in silo

○ The input is from an upstream data pipeline

○ Results need to be made available to other components of the production environment

○ Close Integration with other components / services



Bridge this gap
● Know a bit more about the implementation details

○ Traditional statistical training: theory, applied methods

○ Computational statistics (+1)

○ Not to get lost in all the algorithm/programming details

● A working knowledge of distributive computing and big data

○ MapReduce paradigm

○ Apache Spark

○ Not really a difficult concept

○ Accumulated over time



Implementation details
● Lots of handy R functions / libraries are not available in other environments

● Some are only partially available

● Need customization

● Improve understanding

● Not really to reinvent the wheels



Implementation details
● Back to domain ranking example

○ Think about how rank is computed

○ Handling ties: the default method in Spark is not sufficient

○ Two approaches: functional vs imperative

● When data is big

○ Think about these implementation details in the context of distributive computing

○ Avoid potential pitfalls



Distributed computing -- very brief intro
● MapReduce with an example

○ Huge log files stored in HDFS; want to compute domain (possibly including path) popularity

○ Could be that the end results -- all (domain, count) pairs -- cannot fit in memory

● Map

○ Each line -> (extracted domain, 1)

● Shuffle

○ Essentially group by key (domain in this case)

● Reduce

○ Aggregation, summation etc

○ (d1, 1), (d1, 1), (d1, 1) -> (d1, 3)



MR diagram

aimotion.blogspot.com



Not totally new to us statisticians
● We do things similar in R all the time



Map



Shuffle



Reduce



Spark and RDD -- very brief intro
● RDD: Resilient Distributed Dataset

● In memory > on disk > over the network

● Back to domain ranking example context

○ Avoid pitfalls: groupByKey, reduceByKey, sortByKey

d1 18.5 10

d2 18.5 11

d3 18.5 12

d4 17 9

... ...

d2 18.5

d3 18.5

... .

Sort by value;
Take index

Reduce (several 
choices)

d1 18.5 11

d2 18.5 11

d3 18.5 11

d4 17 9



Lambda architecture -- batch view

lambda-architecture.net



Road map
● Introduction

● Batch mode

● Streaming

● Lambda Architecture



Example: rare levels of categorical variable
● Problem of interest

○ To find levels (if any) of a categorical variable that occur rarely

● One straightforward solution

○ To estimate the probability that each level occurs

● Issue

○ Long tail (i.e. high cardinality) variables

● How to address this?



Example: rare levels
● Borrow the p-value concept

○ Previously: estimating one probability for each level

○ Now: estimating sum of probabilities for each level

● The same binomial formulation

○ If needed, we could use upper confidence bound to be on the conservative side

○ For each level, we can define its rarity score

● Straightforward and easy to implement 

○ +1



Example: rare levels
● So far we assumed data at rest

● Batch processing

● What if data arrives in streaming mode? Or your wanna near real-time detection

○ Fast data



Rare levels - streaming
● HashMap like data structure for data representation

○ Map(level -> count)

● First compute and then update for each arrival event

○ Compute: lookup and scan/filter operations

○ Update: insertion operation

○ Could do this in reverse order as well

● This is fine if data arrive at a slow/moderate rate

● What if data arrived very fast?



Rare levels - streaming
● The problem with the initial computation logic

○ A whole map scan/filter operation for each arrival event

● Need additional data structure

○ Red-black tree among other possible choices

○ Quickly find levels that are less frequent than the current one

● Additional time needed for the updating logic

○ Update this new data structure after computing for each event

● What if data arrived REALLY fast

○ Come back later



Lambda architecture - streaming view

lambda-architecture.net



Rare levels -- summary
● Statistical aspects

○ p-value like idea (conservative in practice)

○ focusing on computing confidence interval

● Engineering aspects

○ Speed in practice

○ Implementation details



What if data arrives REALLY fast
● Consider Approximation

○ Generally applicable; often times a good idea

● Events -> model (which keeps updating itself) -> output

○ Each component can be viewed as a trade-off between accuracy and computational performance

○ From single event to small batch of events

○ From model updating per event to updating per bulk of events

○ Heuristics for computing the output

● Other than approximation, any systematic approach/framework?

○ Lambda Architecture



Road map
● Introduction

● Batch mode

● Streaming

● Lambda Architecture



Back to this “rare levels” example
● What if data arrived really really fast

○ HashMap time complexity: essentially constant

○ This additional red-black tree: log(N)

○ The streaming model will be inevitably slow after a while (especially for fast data)

● Batch models take much less time per event to build

○ But it’s NOT kept up-to-date

● Enjoy the best of both worlds

○ Lambda Architecture



Lambda Architecture -- scratching the surface
● Due to Nathan Marz

● Query = function(all data)

○ Not feasible

● Essential idea

○ Batch view = function(all data)

○ Realtime view = function(Realtime view, new data)

○ Query = function(Batch view, Realtime view)

● Batch layer scales by just adding new machines

Batch Layer

Serving Layer

Speed Layer



Lambda Architecture

lambda-architecture.net



Kafka and Cassandra (very briefly)
● Kafka

○ Originally from LinkedIn

○ Distributed publish-subscribe messaging system

○ Producer, Consumer and Broker

● Cassandra

○ Originally from Facebook

○ Distributed feature from Amazon Dynamo

○ Data model from Google BigTable



Kafka and C* in Lambda Architecture



Thank you!

Questions


