Big Data Meets Statistics

 $\bullet \bullet \bullet$

Dr. Yijiang John Li

March, 2016

At the beginning ...

- About me
 - Michigan
 - Google
 - Caspida (now Splunk)
 - yijiang1121@gmail (or LinkedIn)

- Acknowledgement
 - Kathy and Oliver
 - Mentors, colleagues and friends

Road map

- <u>Introduction</u>
- Batch mode
- Streaming
- Lambda Architecture

Introduction

- Nowadays almost anything data related is tied to the term Data Science
 - Two types of data scientist: type A and type B (due to Michael Hochster)
 - o Type A
 - A for Analysis; making sense of data
 - Strong statistical background; practical details of working with data that aren't taught in the statistics curriculum; communicating well about data
 - Type B
 - B for Building; building models which interact with users
 - Strong programming background; interested in using data "in production"
- Goal: to share my thoughts and lessons learned (focusing on B).

Introduction – what are models for

- The interpretation / discovery side
 - Often this involves the estimation of certain parameters of interest
- The prediction side
 - Batch mode
 - Can be used online as well
 - Infrequent model updates
 - Streaming mode
 - Frequent model updating (model aging)
 - Forgetfulness

Road map

- Introduction
- <u>Batch mode</u>
- Streaming
- Lambda Architecture

Batch mode – data at rest

- Start with a straightforward problem
 - Many domains (hosts)
 - Many features: global popularity and local popularity; reputation score; # paths; randomness ...
 - Interested in comparing domains w.r.t certain features
- Using percentile is very meaningful for comparison purpose
 - Also very useful if we want to flag a set of domains for further investigation
- Handling ties
 - Use average ranks

Batch – easy part

- Not a problem if data is relatively small and lives in a "siloed" environment
 - Easily fit in the memory of a single machine
 - Think about R data frame
 - R: rank(x, ties.method = "average")
- This is quite common for one-off analysis
 - Such aggregated data are pulled from some data repo
 - Create an analysis report for business intelligence and etc

Batch – hard part

- What if data is reasonably big
 - could be millions of domains (even more if including paths) and hundreds of features
 - Interested in more granular levels of information, such as daily, weekly, monthly
 - Cannot be handled by a single machine
- What if data is no longer in silo
 - The input is from an upstream data pipeline
 - Results need to be made available to other components of the production environment
 - Close Integration with other components / services

Bridge this gap

- Know a bit more about the implementation details
 - Traditional statistical training: theory, applied methods
 - Computational statistics (+1)
 - Not to get lost in all the algorithm/programming details
- A working knowledge of distributive computing and big data
 - MapReduce paradigm
 - Apache Spark
 - Not really a difficult concept
 - Accumulated over time

Implementation details

- Lots of handy R functions / libraries are not available in other environments
- Some are only partially available
- Need customization
- Improve understanding
- Not really to reinvent the wheels

Implementation details

- Back to domain ranking example
 - Think about how rank is computed
 - Handling ties: the default method in Spark is not sufficient
 - Two approaches: functional vs imperative
- When data is big
 - Think about these implementation details in the context of distributive computing
 - Avoid potential pitfalls

Distributed computing – very brief intro

- MapReduce with an example
 - Huge log files stored in HDFS; want to compute domain (possibly including path) popularity
 - \circ Could be that the end results -- all (domain, count) pairs -- cannot fit in memory
- Map
 - Each line -> (extracted domain, 1)
- Shuffle
 - Essentially group by key (domain in this case)
- Reduce
 - Aggregation, summation etc
 - (d1, 1), (d1, 1), (d1, 1) -> (d1, 3)

MR diagram

Not totally new to us statisticians

• We do things similar in R all the time

```
> data <- list("google.com", "amstat.org", "umich.edu", "umich.edu")
> str(data)
List of 4
$ : chr "google.com"
$ : chr "amstat.org"
$ : chr "umich.edu"
$ : chr "umich.edu"
```

Мар

```
> map <- function(d) list(d, 1)
> after_map <- lapply(data, map)</pre>
> str(after_map)
List of 4
 $ :List of 2
  ..$ : chr "google.com"
  ..$ : num 1
 $ :List of 2
  ...$ : chr "amstat.org"
  ..$ : num 1
 $ :List of 2
  ..$ : chr "umich.edu"
  ..$ : num 1
 $ :List of 2
  ..$ : chr "umich.edu"
  ...$ : num 1
```

Shuffle

```
> after_shuffle <- split(after_map, unlist(data))</pre>
> str(after_shuffle)
List of 3
 $ amstat.org:List of 1
  ..$ :List of 2
  ....$ : chr "amstat.org"
  ....$ : num 1
 $ google.com:List of 1
  ..$ :List of 2
  ....$ : chr "google.com"
  ....$ : num 1
 $ umich.edu :List of 2
  ..$ :List of 2
  ....$ : chr "umich.edu"
  ....$ : num 1
  ..$ :List of 2
  ....$ : chr "umich.edu"
  ....$ : num 1
```

Reduce

> reduce <- function(list) sum(sapply(list, function(each) each[[2]]))
> after_reduce <- lapply(after_shuffle, reduce)
> str(after_reduce)
List of 3
\$ amstat.org: num 1
\$ google.com: num 1
\$ umich.edu : num 2

Spark and RDD – very brief intro

- RDD: Resilient Distributed Dataset
- In memory > on disk > over the network
- Back to domain ranking example context
 - Avoid pitfalls: groupByKey, reduceByKey, sortByKey

			d1	18.5	10		d1	18.5	11
d2	18.5	Sort by value; Take index	d2	18.5	11	Reduce (several choices)	d2	18.5	11
d3	18.5		d3	18.5	12		d3	18.5	11
	-		d4	17	9		d4	17	9

Lambda architecture – batch view

Road map

- Introduction
- Batch mode
- <u>Streaming</u>
- Lambda Architecture

Example: rare levels of categorical variable

- Problem of interest
 - \circ To find levels (if any) of a categorical variable that occur rarely
- One straightforward solution
 - To estimate the probability that each level occurs
- Issue
 - Long tail (i.e. high cardinality) variables
- How to address this?

Example: rare levels

- Borrow the p-value concept
 - Previously: estimating one probability for each level
 - Now: estimating sum of probabilities for each level
- The same binomial formulation
 - If needed, we could use <u>upper confidence bound</u> to be on the conservative side
 - For each level, we can define its rarity score
- Straightforward and easy to implement

• **+1**

Example: rare levels

- So far we assumed data at rest
- Batch processing
- What if data arrives in streaming mode? Or your wanna near real-time detection
 - Fast data

Rare levels - streaming

- HashMap like data structure for data representation
 - Map(level -> count)
- First compute and then update for each arrival event
 - Compute: lookup and scan/filter operations
 - Update: insertion operation
 - \circ ~ Could do this in reverse order as well
- This is fine if data arrive at a slow/moderate rate
- What if data arrived very fast?

Rare levels - streaming

- The problem with the initial computation logic
 - A whole map scan/filter operation for each arrival event
- Need additional data structure
 - Red-black tree among other possible choices
 - Quickly find levels that are less frequent than the current one
- Additional time needed for the updating logic
 - Update this new data structure after computing for each event
- What if data arrived REALLY fast
 - Come back later

Lambda architecture - streaming view

Rare levels – summary

- Statistical aspects
 - p-value like idea (conservative in practice)
 - focusing on computing confidence interval
- Engineering aspects
 - Speed in practice
 - Implementation details

What if data arrives **REALLY** fast

- Consider <u>Approximation</u>
 - Generally applicable; often times a good idea
- Events -> model (which keeps updating itself) -> output
 - Each component can be viewed as a trade-off between accuracy and computational performance
 - From single event to small batch of events
 - From model updating per event to updating per bulk of events
 - Heuristics for computing the output
- Other than approximation, any systematic approach/framework?
 - Lambda Architecture

Road map

- Introduction
- Batch mode
- Streaming
- Lambda Architecture

Back to this "rare levels" example

- What if data arrived really really fast
 - HashMap time complexity: essentially constant
 - \circ This additional red-black tree: log(N)
 - \circ The streaming model will be inevitably slow after a while (especially for fast data)
- Batch models take much less time **per event** to build
 - But it's NOT kept up-to-date
- Enjoy the best of both worlds
 - Lambda Architecture

Lambda Architecture – scratching the surface

- Due to Nathan Marz
- *Query = function(all data)*
 - Not feasible
- Essential idea
 - Batch view = function(all data)
 - *Realtime view = function(Realtime view, new data)*
 - *Query = function(Batch view, Realtime view)*
- Batch layer scales by just adding new machines

Lambda Architecture

Kafka and Cassandra (very briefly)

• Kafka

- Originally from LinkedIn
- Distributed publish-subscribe messaging system
- Producer, Consumer and Broker
- Cassandra
 - Originally from Facebook
 - Distributed feature from Amazon Dynamo
 - Data model from Google BigTable

Kafka and C* in Lambda Architecture

Questions