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Outlin

The breadth/depth of the problems

Combining discrete and continuous sequences:
Multiple Kernel Anomaly Detection (MKAD)

Derived from anomaly detection methods on discrete
and continuous sequences.

Text Mining: classification, topic modeling
Ongoing, future work
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From Irving Statler, Aviation Safety Monitoring and Modeling Project
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Data Mini

* |[VHM/SSAT project goals require leveraging
substantial data.

— Aircraft-produced: Sensor data, flight-related data
(e.g., origin, destination), covering many flights
over many years.

— Other: Safety reports, trajectories

* Transform data into useful knowledge
— Tools for Detection, Diagnosis, Prognosis,
Mitigation
— Levels ranging from flight-level to national air
5 space level



* Combining discrete and continuous sequences:
Multiple Kernel Anomaly Detection (MKAD)

Derived from anomaly detection methods on discrete
and continuous sequences.

* Text Mining: classification, topic modeling
* Ongoing, future work



Need to model the behavior of discrete sensors and
switches in an aircraft during flight.

Focus is on primary sensors that record pilot actions.

The aim is to discover atypical behavior that has
possible operational significance.



 We developed sequenceMiner:
Each flight is analyzed as a sequence of events, accounting for
e order in which switches change values
* frequency of occurrence of switches

 Two Tasks:

* Given a group of flights, find flights that are anomalous.

e Given an anomalous flight, describe the anomalies and the
degree of anomalousness.

 Method based on techniques used in bioinformatics.



Sequences S. 1n a cluster 1s
dependent on a prototype C

The outlier O is dependent
on the S,

Therefore:

P(O|C) = ZiP(O|Si) x P(S,|C)

This forms the basis of our
objective function F that
allows us to describe why
sequences are anomalous.



Missing and Extra ¢

P(O|S,) 1s proportional to the normalized length of the longest common
subsequence of O and S,

* Discovery of missing and extra symbols 1s done by aligning the
sequences

Missing and extra symbols are those whose addition to or deletion from an
outlier sequence O would make O more normal with respect to the
objective function F

AlB|l | [E] _

Cluster Members A B C E F
— Alignment

AlB|lc| | |F

Outlier Sequence —> A - C D E F

[N

Missing a “B” Has extra “D”



Normalized Longest Common Subsequence (NLCS)

L{h(s.-s)))
\/L(sl.) X L(sj)

where the functions #() and L() calculate the longest
common subsequence and length of the sequences.
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MKAD for Fleet wide

Sequences D and continuous
data streams C interactions

How to integrate all information
in a concise and intuitive manner?

OOO

Compression,
Feature extraction,
Fusion,
ly detectior

Anom
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Optimization prot

minimize @

subjectto 0 <

Unique
Linear
Decision
Boundary

v (BKy (zi,2) + (1 — B) K. (z;,2;))

j/.

Z ; = 1

2

Discrete kernel

Continuous kernel

In the objective function, each entry of the discrete kernel and the continuous
kernel represents the score obtained using longest common subsequence
(LCS) of discrete signals and SAXified continuous signals, respectively.



Pairwise Similar

Kernel on discrete : Normalized Longest Common
Subsequence (NLCS)

Lils..s, )
Kd(fi»fj )= \/L(s,. )XL(%)

Kernel on continuous : Inversely proportional to
distance between SAX representations of sequences



General Case, Multi

One class SVMs training algorithms require solving the quadratic problem

Linear equality
constraint

Control parameter

Bounds on design
variables

Dual form . 1
minQ = Ezalaj E/}’AKA(xl,x])

i,j A

Subject to: Ea" _
velo,l]

O<a, < L,Vz
[v
Also:

Eﬁx=1

Q. : Lagrange multipliers of the primal QP problem




Anomaly s

Decision boundary is determined only by margin and non-margin support
vectors obtained by solving the QP problem

h(OC,/D’,fZ,,O)= Eai ZﬁAK:fz —pP

Datapoints with ¢, > 0 will
be the support vectors

Indicator

Sign of h: if negative - outlier
if positive - normal

Magnitude of h: degree of normality/anomalousness



Flight IDs

Synthetic Exp
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Case study: FOQA an
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MKAD Sum

Performs

... anomaly detection on multivariate
mixed attributes where discrete Highlights
may influences the system
dynamics which is reflected on
the continuous data streams.

.. High detection rate on most
operationally significant
anomalies in fleet wide
analysis on large datasets

; . .. Discover some "unknown
Application unknowns"

1. Support flights safety experts
2. Schedule maintenance



* Text Mining: classification, topic modeling
* Ongoing, future work



Aviation Safety Te

Pilots are encouraged to report incidents, concerns, or unsafe
conditions. Two repositories:

— The NASA-FAA Aviation Safety Reporting System (ASRS).

— Each individual airline has an Aviation Safety Action Program (ASAP).

Reports can be analyzed to improve aviation safety.

Reports need to be correctly and consistently categorized by
event type to determine dangerous situations and track
trends of incidents and events.

Event types are not enough to capture all anomalies. Topic
identification needed to identify new event types,
combinations of event types.



Manually Classityi

 Review and analysis of reports is labor intensive.

— In ASRS, reviewers have classified about 135,000 ASRS
reports of 715,000 total reports submitted into 60
overlapping anomaly categories.

— The length of the reports range from 0.5-4 pages long.
— ASRS reports accrue at about 3,000 per month.

— Classifications not always consistent due to multiple
reviewers, changing experiences.
* Historical reports must be reread when new categories are
added or changed.

* Current systems rely heavily on human memories for historical
perspectives.



Note: Industry specific vocabulary and abbreviations.



Automatic Categorization

A single report can be in multiple categories.

ASRS Report Excerpt

Sample of 60 ASRS
Anomaly Categories

JUST PRIOR TO
TOUCHDOWN, LAX TWR
TOLD US TO GO AROUND
BECAUSE OF THE ACFT IN
FRONT OF US. BOTH THE
COPLT AND |, HOWEVER,
UNDERSTOOD TWR TO SAY,
'CLRED TO LAND, ACFT ON
THE RWY.' SINCE THE ACFT
IN FRONT OF US WAS CLR
OF THE RWY AND WE BOTH
MISUNDERSTOOD TWR'S
RADIO CALL AND
CONSIDERED IT AN
ADVISORY, WE LANDED...

Non Adherence to ATC Clearance

Critical Equipment Problem

Runway Incursion

Landing without a Clearance

Air Space Violation

Altitude Deviation Overshoot

Fumes

Altitude Deviation Undershoot

Ground Encounter, Less Severe
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Mariana vs. Methods
Proc

1.0
* Mariana w/ raw text only
0.8 Support Vector
Machine w/NLP
o . Decision Tree
2 w/NLP
8 0.6
@) A Random
8 Forest w/ NLP
g . Logistic
c 04 r 7 Regression w/NLP
S
g ® @ Linear
< Discriminant
Analysis w/NLP
02 —
00 | | | |

Categories*

The Mariana algorithm can give substantially better results
over other methods (green box), even when processing raw text.



* Text Mining: topic modeling
* Ongoing, future work



Subspace Appr:

e Goals

— System often assumed explainable by simple model plus
noise. Construction of simple approximation may reduce
noise.

— Derive small, key set of features to explain system
behavior.

— Lower storage requirements.

* |ssue

— Derived features more intuitive if they are positive,
reflecting presence of key components that add up to
characterize the item of interest.



Non-negative Mat

 NMF finds factors
representing parts of
faces (e.g., nose,
mouth). Easy to
interpret.

NME Original

* Vector Quantization
and PCA find holistic
representations (face
+/- other stuff).
Difficult to interpret.
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Non-negative Matrix

mxn

Problem: Given a nonnegative matrix A € R™" and a positive
integer kK <min{m,n} find nonnegative matrices
to minimize W € R™** H ¢ RF*"

1
FOW,H) = S| A-WHI}

WH is a nonnegative matrix factorization. Columns
of W represent k basis vectors captured from n
examples having m feature values each. H gives
factor-example weights. k is problem-specific and
chosen by user.



NMF for clas

* NMF factors can be used for clustering,
classification, regression.

e Classification of ASAP reports into one or
more contributing factors.

1
f(Wrp, Hy) = §HAT — WrHrp||%

1
f(Hg) = §HAE — WrHEg|%



Sample (ASRS)

Basis Vector 1

Run 1

FUEL

TANK
POUND
GALLON
GAUGE
PUMP
FUELTANK
BURN
FUELER
FUELQUANTITY
CENTER
MAINTANK
FUELGAUGE
IMBAL
REFUEL
CROSSFEED
QUANTITY
BALANCE
CALCULATE
EMPTY

2

FUEL

TANK
POUND
GALLON
GAUGE
PUMP

BURN
FUELTANK
FUELER
FUELQUANTITY
CENTER
DISPATCH
FUELGAUGE
MAINTANK
IMBAL
REFUEL
QUANTITY
PLAN
CROSSFEED
CALCULATE

3

FUEL

TANK
POUND
GALLON
GAUGE
PUMP

BURN
FUELTANK
FUELER
FUELQUANTITY
CENTER
FUELGAUGE
MAINTANK
IMBAL
REFUEL
PLAN
CALCULATE
CROSSFEED
BALANCE
EMPTY

1

INSTALL
INSPECT
REMOVE
REPLACE
MECHANIC
FOUND
WORK
MANUAL
REPAIR
PART
ENGINEER
TEST
CHECK
SHIFT

SIGN
ASSEMBLE
MAINTAIN
SERVE
CARD
TECHNICIAN

Basis Vector 2

2

INSTALL
INSPECT
REMOVE
MECHANIC
REPLACE
PART
MANUAL
WORK
REPAIR
FOUND
SIGN
ENGINEER
NUMBER
SHIFT
MAINTAIN
TEST
ASSEMBLE
AIRCRAFT
XYZ
TECHNICIAN

3

INSTALL
REMOVE
REPLACE
ENGINEER
MANUAL
INSPECT
WORK
SHIFT
FOUND
ASSEMBLE
TECHNICIAN
REPORT
PANEL
REPAIR
JOB

XYZ

BOLT
CARD
LEAK
JOBCARD
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* Ongoing, future work



Ongoing, Fut

 Anomaly detection over discrete, continuous,
and text (utilize when available, don’t penalize
when not).

* Anomaly cause/precursor identification.

* Prediction over multiple scales: within flight,
across flights, across fleets over years.
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Multiple Kernel Anomaly Detection

Sample Text
Report

JUST PRIOR
1O
TOUCHDOWN,
LAX TWR
TOLD US TO
GO AROUND
BECAUSE OF
THE ACFT IN
FRONT OF

us. ...

(KDD 2010)

* Diagram for notional purposes only




Mining Heterogenec

Primary Source: aircraft

Can answer what
happened in an aircraft
during an Aviation Safety

Primary Source: Radar
data. Can answer what

happened in the National
Airspace during Aviation
Safety Incident

Primary Source:
Humans. Can answer
why an Aviation Safety
Incident happened

y 4

Sample Text
Report

— JUST PRIOR
10
TOUCHDOWN,
LAX TWR
TOLD US TO
GO AROUND

. BECAUSE OF
THE ACFT IN
FRONT OF

us. ...

Massive Data:
Archives growing at
100K flights per
month.




The Anatomy of an Avi
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From Irving Statler, Aviation Safety Monitoring and Modeling Project



DASHIink

disseminate. collaborate. innovate.
https://dashlink.arc.nasa.gov/

DASHIink is a collaborative
website designed to promote:

* Sustainability

* Reproducibility

* Dissemination

* Community building
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* Share papers, upload and
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* Find NASA data sets.
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Dr. Srivastava is also the leader of the Intelligent Data Understanding group at NASA Ames
Research Center. The group performs research and development of advanced machine
learning and data mining algorithms in support of NASA missions. He performs data mining
research in a number of areas in aviation safety and application domains such as earth
sciences to study global climate processes and astrophysics to help characterize the
large-scale structure of the universe.
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Conference on Intelligent D
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Stephen Boyd
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Nikunj Oza

Raghu Ramakrishnan

Conference focused on * Steering Committee
theory and applications of
data mining and machine .
learning to Earth Science, .
Space Science, Engineering .
Systems
Location: Computer History .
Museum, Mountain View, CA .

Date: October 5-6, 2010
Registration: Free

Ramasamy Uthurusamy
Ramasubbu Venkatesh
Xindong Wu
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