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Linear Models in Data Mining

As datasets grow wide—i.e. many more predictors than

samples—linear models have regained popularity.

Document classification: bag-of-words can leads to p = 20K

features and N = 5K document samples.

Image deblurring, classification: p = 65K pixels are features,

N = 100 samples.

Genomics, microarray studies: p = 40K genes are measured

for each of N = 100 subjects.

Genome-wide association studies: p = 500K SNPs measured

for N = 2000 case-control subjects.

In all of these we use linear models — e.g. linear regression, logistic

regression, Cox model. Since p≫ N , we have to regularize.
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Forms of Regularization

We cannot fit linear models with p > N without some constraints.

Common approaches are

Forward stepwise adds variables one at a time and stops when

overfitting is detected. This is a greedy algorithm, since the

model with say 5 variables is not necessarily the best model of

size 5.

Best-subset regression finds the subset of each size k that fits the

model the best. Only feasible for small p around 35.

Ridge regression fits the model subject to constraint∑p
j=1 β

2
j ≤ t. Shrinks coefficients toward zero, and hence

controls variance. Allows linear models with arbitrary size p to

be fit, although coefficients always in row-space of X .
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Lasso regression fits the model subject to constraint∑p
j=1 |βj | ≤ t.

Lasso does variable selection and shrinkage, while ridge only

shrinks.

β2

β1

β̂
β2

β1

β̂



Stanford 2010 Trevor Hastie, Stanford Statistics 5

Brief History of ℓ1 Regularization

min
β

N∑

i=1

(yi − β0 −

p∑

j=1

xijβj)
2 subject to

p∑

j=1

|βj | ≤ t

• Wavelet Soft Thresholding (Donoho and Johnstone 1994) in

orthonormal setting.

• Tibshirani introduces Lasso for regression in 1995.

• Same idea used in Basis Pursuit (Chen, Donoho and Saunders

1996).

• Extended to many linear-model settings e.g. Survival models

(Tibshirani, 1997), logistic regression, and so on.

• Gives rise to a new field Compressed Sensing (Donoho 2004,

Candes and Tao 2005)—near exact recovery of sparse signals in

very high dimensions. In many cases ℓ1 a good surrogate for ℓ0.
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∑N
i=1(yi − β0 − xT

i β)
2 + λ||β||1
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History of Path Algorithms

Efficient path algorithms for β̂(λ) allow for easy and exact

cross-validation and model selection.

• In 2001 the LARS algorithm (Efron et al) provides a way to

compute the entire lasso coefficient path efficiently at the cost

of a full least-squares fit.

• 2001 – present: path algorithms pop up for a wide variety of

related problems: Grouped lasso (Yuan & Lin 2006),

support-vector machine (Hastie, Rosset, Tibshirani & Zhu

2004), elastic net (Zou & Hastie 2004), quantile regression (Li

& Zhu, 2007), logistic regression and glms (Park & Hastie,

2007), Dantzig selector (James & Radchenko 2008), ...

• Many of these do not enjoy the piecewise-linearity of LARS,

and seize up on very large problems.
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Coordinate Descent

• Solve the lasso problem by coordinate descent: optimize each

parameter separately, holding all the others fixed. Updates are

trivial. Cycle around till coefficients stabilize.

• Do this on a grid of λ values, from λmax down to λmin

(uniform on log scale), using warms starts.

• Can do this with a variety of loss functions and additive

penalties.

Coordinate descent achieves dramatic speedups over all

competitors, by factors of 10, 100 and more.
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Speed Trials on Large Datasets

Competitors:

glmnet Fortran based R package using coordinate descent. Covers

GLMs and Cox model.

l1logreg Lasso-logistic regression package by Koh, Kim and Boyd,

using state-of-art interior point methods for convex

optimization.

BBR/BMR Bayesian binomial/multinomial regression package by

Genkin, Lewis and Madigan. Also uses coordinate descent to

compute posterior mode with Laplace prior—the lasso fit.
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Logistic Regression — Real Datasets

Name Type N p glmnet l1logreg BBR

BMR

Dense

Cancer 14 class 144 16,063 57 NA 2.1 hrs

Leukemia 2 class 72 3571 0.65 55.0 450

Sparse

Internet ad 2 class 2359 1430 5.0 20.9 34.7

Newsgroup 2 class 11,314 777,811 28 3.5 hrs

Timings in seconds (unless stated otherwise). For Cancer, Leukemia and

Internet-Ad, times are for ten-fold cross-validation over 100 λ values; for

Newsgroup we performed a single run with 100 values of λ, with

λmin = 0.05λmax.
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A brief history of coordinate descent for the lasso

1997 Tibshirani’s student Wenjiang Fu at U. Toronto develops the

“shooting algorithm” for the lasso. Tibshirani doesn’t fully

appreciate it.

.
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A brief history of coordinate descent for the lasso

1997 Tibshirani’s student Wenjiang Fu at U. Toronto develops the

“shooting algorithm” for the lasso. Tibshirani doesn’t fully

appreciate it.

2002 Ingrid Daubechies gives a talk at Stanford, describes a

one-at-a-time algorithm for the lasso. Hastie implements it,

makes an error, and Hastie +Tibshirani conclude that the

method doesn’t work.

2006 Friedman is external examiner at PhD oral of Anita van der

Kooij (Leiden) who uses coordinate descent for elastic net.

Friedman, Hastie + Tibshirani revisit this problem. Others

have too — Shevade and Keerthi (2003), Krishnapuram and

Hartemink (2005), Genkin, Lewis and Madigan (2007), Wu and

Lange (2008), Meier, van de Geer and Buehlmann (2008).
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Coordinate descent for the lasso

minβ
1

2N

∑N
i=1(yi −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 |βj |

Suppose the p predictors and response are standardized to have

mean zero and variance 1. Initialize all the βj = 0.

Cycle over j = 1, 2, . . . , p, 1, 2, . . . till convergence:

• Compute the partial residuals rij = yi −
∑

k 6=j xikβk.

• Compute the simple least squares coefficient of these residuals

on jth predictor: β∗
j = 1

N

∑N

i=1 xijrij

• Update βj by soft-thresholding:

βj ← S(β∗
j , λ)

= sign(β∗
j )(|β

∗
j | − λ)+

(0,0)

λ
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Elastic-net penalty family

Family of convex penalties proposed in Zou and Hastie (2005) for

p≫ N situations, where predictors are correlated in groups.

minβ
1

2N

∑N
i=1(yi −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 Pα(βj)

with Pα(βj) =
1
2 (1− α)β2

j + α|βj |.

α creates a compromise between the lasso and ridge.

Coordinate update is now

βj ←
S(β∗

j , λα)

1 + λ(1− α)

where β∗
j = 1

N

∑N
i=1 xijrij as before.

(0,0)
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glmnet: coordinate descent for elastic net family

Friedman, Hastie and Tibshirani 2008
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shown.
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glmnet R package

New version of R glmnet package includes Gaussian, Poisson,

Binomial, Multinomial and Cox models.

Computes entire regularization path efficiently for lasso — elastic

net — ridge penalties.

Has built-in cross-validation functions for selecting tuning

parameters.

Can handle very large datasets, and exploit sparsity in X matrix.

Dramatic speedups using strong-rule variable screening (Tibshirani

et al 2010, Wu et al 2009).
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Cross Validation to select λ
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K-fold cross-validation is easy and fast. Here K=10, and the true

model had 10 out of 100 nonzero coefficients.
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Problem with Lasso

When p is large and the number of relevant variables is small:

• to screen out spurious variables, λ should be large, causing bias

in retained variables.

• decreasing λ to reduce bias floods the model with spurious

variables.

Many approaches to modify the lasso to address this problem. Here

we focus on concave penalties (Mazumder et al, JASA 2011 in

press).
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Concave penalties

• Penalize small coefficients more severely than lasso, leading to

sparser models.

• Penalize larger coefficients less, and reduce their bias.

• Concavity causes multiple minima and computational issues.
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minβ
1

2N

∑N
i=1(yi −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 Pγ(βj)
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Constraint region for concave penalty

β2

β1

β̂
β2

β1

β̂

Shown are ℓ1 (lasso) and ℓq penalty
∑p

j=1 |βj |
q ≤ t with q = 0.7.

Note that ℓ0 regularization corresponds to best-subset selection.
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Penalty families and threshold functions
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(a) Friedman and Frank (1993) (b) Friedman (2008) (c) Fan and Li (2001) (d) Zhang

(2010), Zhang&Huang(2008). Since symmetric about zero, only positive side shown.
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sparsenet: coordinate descent for concave families

Mazumder, Friedman and Hastie (2009)

• Start with lasso family and obtain regularization path by

coordinate descent.

• Move down family to slightly concave penalty, using lasso

solutions as warm starts.

• Continue in this fashion till close to best subset penalty.

Results in regularization surface for concave penalty families.

Related ideas in She (2008) using threshold functions, but not coordinate

descent.
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We prefer Zhang’s MC+ penalty calibrated for constant df for

fixed λ. Effective df computed as for lasso (Zou et al, 2007).

As γ changes from lasso to best subset, shrinking threshold

increases setting more coefficients to zero.
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Properties

• Threshold functions are continuous in γ.

• Univariate optimization problems are convex over sufficient

range of γ to cover lasso to subset regression, resulting in

unique coordinate solutions.

• Monotonicity in shrinking threshold.

• Algorithm provably converges to (local) minimum of penalized

objective.

• Empirically outperforms other algorithms for optimizing

concave penalized problems.

• Inherits all theoretical properties of MC+ penalized solutions

(Zhang, 2010 AoS).
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Summary and Future Work

• ℓ1 regularization (and variants) has become a powerful tool

with the advent of wide data.

• Coordinate descent is fastest known algorithm for solving many

of these problems—along a path of values for the tuning

parameter.

• Currently developing fast algorithms using group lasso for

screening interactions (gene-gene, gene-environment) in GLM

models with p≫ N .

• Developing methods for estimating sequential FDR for path

algorithms.


